Image-Guided Cryoaiblation for Desmoid Tumors: Successes, Challenges, and Lessons Learned

Adam Miltona, M.D., Brent Beath, M.D., John Block, M.D., Katherine Hartley, M.D.
Section of Musculoskeletal Radiology
Vanderbilt University, Nashville, Tennessee, USA

PURPOSE

In this exhibit, we review selected cases from our experience with treating extra-abdominal desmoid tumors with cryotherapy. Imaging and treatment outcomes of several illustrative cases will be highlighted, focusing on technical considerations and lessons learned.

BACKGROUND

- Desmoid tumors, or aggressive fibromatoses, are rare benign fibrous neoplasms originating from the musculoskeletal structures throughout the body, most commonly in the rectus abdominis.
- Although desmoid tumors have no metastatic potential, they are locally aggressive and recurrence is common following surgical excision, necessitating investigation of alternative forms of therapy.
- Aside from watchful waiting and surgical excision, alternative treatment methods include radiation therapy, chemotherapy, hormone therapy, and most recently, percutaneous and non-invasive ablation, including cryotherapy.
- While several groups have reported successful treatment of desmoid tumors with cryoaiblation, the literature remains limited.

WHAT IS CRYOTHERAPY?

- Utilizing rapid expansion of argon gas (Joule-Thompson effect), multiple repetitive cycles of rapid tissue freezing (-40°C) followed by slow thawing result in cell death.
- At -40°C intracellular ice forms. As temperatures approach -70 to -10°C during thawing, ice forms outside cells creating a hypothermic environment. Reversing intracellular water out. With further thawing, extracellular ice temporarily melts creating a transient hypoxic environment and water re-enters and expands the damaged cells resulting in membrane rupture.
- With multiple freeze-thaw cycles, extracellular ice accumulates, cells shrink, and cell membranes and organelles are severely damaged.
- Ice also forms in small blood vessels feeding the tumor, resulting in compromised blood supply with tissue ischemia and cell death.

REFERENCES

CASE 1 - How to avoid nearby structures

- 16 year old male with enlarging superficial abdominal mass.
- T2FlAIR (left) showed a desmoid tumor that reached the kidney, with adjacent fat edema and mild extracellular edema. A contrast-enhanced imaging study showed no significant abnormal enhancement or mass effect present.

CASE 2 - Potential complication and re-treatment

- 17 year old male with enlarging left posturalateral ankle mass.
- 1.5 years later, smaller and with less bright T2 signal. The mass is less apparent, no signs enlarging. Second series (not depicted) continues to grow.

CASE 3 - Cure

- 69 year old female presents with worsening left shoulder pain.
- Axial T1 T2 FSE FLAIR (left) shows the left shoulder shows an enhancing mass adjacent to the supraspinatus and subacromial bursa. The most likely diagnosis is a desmoid tumor. The mass demonstrates no enhancement.

CASE 4 - Recurrence

- 53 year old female with shoulder soreness and palpable mass.
- Axial T1 T2 FSE FLAIR (left) of the left shoulder shows a nodular enhancing lesion arising from the middle and upper axillary fat consistent with a desmoid tumor. A correlative imaging study shows a mass in the axillary fat.

CONCLUSIONS/LESSONS LEARNED

- Percutaneous cryoablation is a potential alternative treatment, as a first line option for growing, symptomatic desmoids or for recurrent/ refractory cases as a salvage option.
- Patients may be predisposed to recurrence at the periphery of the treatment zone. Small lesions away from vital structures are most amenable to this modality.
- Following therapy, continued imaging surveillance is required as treatment related deservation of the lesion may mask early recurrence.
- Long-term treatment outcomes are unknown, further research is needed to determine the efficacy of this modality.