“Mutation stratification of desmoid-type fibromatosis using a radiomics approach – preliminary results”

Milea J.M. Timbergen1,2*, MD, PhD candidate
Department of Surgical Oncology, Department of Medical Oncology
Martijn P.A. Starmans3,4, Msc, PhD candidate
Department of Medical Informatics, Department of Radiology

Melissa Vos,1,2 Guillaume A. Padmos4, Dirk J. Grünhagen1, Geert H.J. van Leenders5, Cornelis Verhoef1, Wiro J. Niessen3,4,6, Stefan Sleijfer2, Stefan Klein3,4 Jacob J. Visser4

1 Department of Surgical Oncology, Erasmus MC Cancer Institute Rotterdam, the Netherlands
2 Department of Medical Oncology, Erasmus MC Cancer Institute Rotterdam, the Netherlands
3 Department of Medical Informatics, Erasmus MC, Rotterdam, the Netherlands
4 Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
5 Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
6 Faculty of Applied Sciences, Delft University of Technology, the Netherlands
Disclosure

Non-profit organisation

STICHTING S COOLSINGEL
The vast majority of desmoid tumors harbor a *CTNNB1* mutation

- About 80-90% of DTF tumors harbor a mutation in the *CTNNB1* (β-catenin) gene\(^1\)
- Supportive diagnostic tool
- Prognostic value?
 - S45F *CTNNB1* mutations have higher recurrence rates\(^2-5\)
The traditional diagnostic pathway of DTF

1. Symptoms
2. Doctors visit
3. Imaging
 - IHC β-catenin stain
 - Biopsy-histological diagnosis
4. CTNNB1 mutation
 - Next generation sequencing
5. Sanger sequencing
6. Definite diagnosis
7. Treatment
Radiomics – make use of conventional imaging methods

- Identification of imaging features that serve as molecular surrogates
- Non-invasive method
- Widely available (pre-treatment) images
- 3D (multiple planes)
Radiomics – previous studies

Non-small cell lung cancer

Gevaert et al. 2017

- Prediction of epidermal growth factor receptor (EGFR) mutation status
- n=186, CT imaging
- 16 semantic features significantly correlated with presence of EGFR (e.g. emphysema, distribution, nodules)
- AUC value 0.89

Clear-cell renal cell carcinoma

Karlo et al. 2014

- CT features and mutation status (VHL, PBRM1, SETD2, KDM5C, BAP1 genes)
- n=233, CT imaging
- VHL gene: well defined tumor margins (p=0.013), nodular tumor enhancement (p=0.021) and gross appearance of intratumoral vascularity (p=0.018)
- KDM5C and BAP1: renal vein invasion (p=0.022) and (p=0.046) respectively
Can we use radiomics in the clinical practice in the context of DTF?

Can we predict DTF $CTNNB1$ mutation status?
Imaging – segmentation – feature extraction – prediction models

<table>
<thead>
<tr>
<th>Online Multiparametric Database</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Imaging – segmentation – feature extraction – prediction models

Online Multiparametric Database

- Lung PET
- Liver CT
- Head Desmoid T1-weighted MR
- Liver T2-weighted MR
- Brain T1-Weighted MR
- Mammogram

Radiomics Platform

- Segmentation
- Classification
- Registration
- Feature Extraction

- Shape
- Intensity
- Advanced
Imaging – segmentation – feature extraction – prediction models
Using +/- 400 imaging features

Semantic features
e.g. age, gender, tumor location, pregnancy

Computational features
e.g. texture, shape, intensity and orientation
Can we predict DTF *CTNNB1* mutation status?

- Treatment naive extra-abdominal / abdominal wall DTF
- Known *CTNNB1* mutation or available formalin fixed parafin embedded samples
- T1 weighted MR imaging (spin-echo (SE) or gradient-echo (GRE))
- Between 2004 and 2017
Cross-validation model

Total: 49 Patients

Training: 80%

Test: 20%

Train Model

Repeat 100x

Evaluation
Can we predict DTF *CTNNB1* mutation status?

<table>
<thead>
<tr>
<th></th>
<th>Number of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>male</td>
<td>14</td>
</tr>
<tr>
<td>female</td>
<td>35</td>
</tr>
<tr>
<td>Tumor location</td>
<td></td>
</tr>
<tr>
<td>abdominal wall</td>
<td>12</td>
</tr>
<tr>
<td>extra-abdominal</td>
<td>37</td>
</tr>
<tr>
<td>CTNNB1 mutation</td>
<td></td>
</tr>
<tr>
<td>T41A</td>
<td>21</td>
</tr>
<tr>
<td>S45F</td>
<td>11</td>
</tr>
<tr>
<td>Wild-type</td>
<td>17</td>
</tr>
</tbody>
</table>
The radiomics technique has a promising role for differentiating WT tumors from tumors with a *CTNNB1* mutation.

<table>
<thead>
<tr>
<th></th>
<th>T41A</th>
<th>S45F</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity [95% CI]</td>
<td>0.26 [0.06 – 0.41]</td>
<td>0.11 [0.05 – 0.11]</td>
<td>0.42 [0.20 – 0.64]</td>
</tr>
<tr>
<td>Specificity [95% CI]</td>
<td>0.78 [0.61 – 0.94]</td>
<td>0.93 [0.83 – 1.02]</td>
<td>0.87 [0.75 – 0.99]</td>
</tr>
<tr>
<td>Area under the curve [95% CI]</td>
<td>0.58 [0.28 – 0.61]</td>
<td>0.58 [0.43 – 0.73]</td>
<td>0.75 [0.61 – 0.88]</td>
</tr>
</tbody>
</table>
Which features are relevant?

T-test

No single significant features after correction for multiple testing

Combination of features?
Conclusion from the pre-iminary results

- Promising role for differentiating WT tumors
Use of radiomics in clinical practice

- Prediction the *CTNNB1* mutation status does not change the diagnostic routine
- Biopsy is still needed to confirm the diagnosis

Can we differentiate DTF tumors from other soft tissue tumors?
Can we differentiate DTF tumors from other soft tissue tumors?

- Treatment naive fibromyxosarcoma, myxoid liposarcoma and leiomyosarcoma of the **extremities**
- T1 weighted MR imaging
- 2004 and 2017

<table>
<thead>
<tr>
<th>Tumor type</th>
<th>Number of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibromyxosarcoma</td>
<td>29</td>
</tr>
<tr>
<td>Myxoid liposarcoma</td>
<td>29</td>
</tr>
<tr>
<td>Leiomyosarcoma</td>
<td>29</td>
</tr>
</tbody>
</table>
Challenges using radiomics in the clinical practice of DTF

Discovery phase study, no validation of findings

Imaging
Differences in imaging protocols, different scanning methods
T1W MR images, extrapolate to other sequences

DTF
Small sample size, create a bigger cohort
Poor DNA quality not able to obtain *CTNNB1* mutations
Challenges using radiomics in the clinical practice of DTF

Radiomics

Learning curve in segmentation
Currently, semi-automatic segmentation → time consuming → automatic segmentation?
Inter- and intra observer differences
Inter and intra-observer variability
Inter and intra-observer variability

Original
Obs. 1, att. 1
Inter and intra-observer variability

Original Obs. 1, att. 1 Obs. 1, att. 2
Inter and intra-observer variability
Radiomics is a promising new technique

Future perspectives
Large cohort (multiple institutes)
Inclusion of multiple sequences
Imaging of DTF using a standard imaging protocol

Optimizing the radiomics platform and analysis (include more imaging features)
Using radiomics to quantify tumor progression / regression (e.g. tumor enhancement) over time
References

https://github.com/MStarmans91/WORC

Milea Timbergen
m.timbergen@erasmusmc.nl

Martijn Starmans
m.starmans@erasmusmc.nl

Department of Medical Oncology
Stefan Sleijfer
Melissa Vos

Department of Surgical Oncology
Kees Verhoef
Dirk Grünhagen

Department of Medical Informatics
Wiro Niessen
Stefan Klein

Department of Radiology
Jacob Visser
Guillaume Padmos

Department of pathology
Geert van Leenders