Treatment of desmoid tumors with magnetic resonance imaging guided high intensity focused ultrasound and cryoablation

Pejman Ghanouni MD, PhD
Assistant Professor
Body MRI Section
Department of Radiology
Experience to date

Desmoid Tumors – 55 Patients

- 53 treated successfully
- 91 treatments
Advantages of MR guidance

Targeting and safety
Advantages of MR guidance

Intra-operative verification using MR thermometry
Advantages of MR guidance

Post-treatment verification
Treatment of soft tissue tumors

Coronal Axial

Pre-MRgHIFU

Post-MRgHIFU

Stanford University
Treatment of soft tissue tumors

Sarcomas

• IDE G130099
• NIH P01 CA15999203
Transition to desmoid tumors

- Soft tissue tumors are a heterogeneous group of tumors arising from connective tissues

- Natural history
 - Benign
 - **Benign, but locally aggressive**
 - Malignant
Treatment of desmoid tumors

- **Surgery**
 - Infiltrative tumor, so large resection needed to achieve negative margins

- **Radiation**
 - Reduce the rate of local recurrence
 - Treat unresectable tumors
 - Palliate pain

- **Conservative approach**
 - Aims to preserve function
 - Recurrence depends not only on positive margin but also on behavior of tumor
Surgical treatment of desmoid tumors
Radiation and desmoid tumors

- **Radiation**
 - Effective at controlling disease in about 80%
 - **BUT**
 - Less effective in children
 - 30% risk of significant complications
 - 5% risk of developing cancer
Clearly, there is an unmet clinical need

STANDARD TREATMENT OPTIONS
- Surgical resection
- Radiation therapy
- Chemotherapy
- Novel systemic treatments (targeted therapies)

SIDE EFFECTS
- Surgical morbidity
- Radiation burns, secondary malignancy, fibrosis, chronic edema
- Chemotherapy toxicity

CLINICAL NEED
- Decrease morbidity associated with treating soft tissue tumors
- Primary, recurrent, or palliative treatment
Methods
Methods
Methods
Methods
Methods: treatment plan
Methods: intra-operative thermometry
Methods: post-treatment evaluation
Summary of treatment results

- **55 PATIENTS: 39 WOMEN, 16 MEN**
- **91 TREATMENTS**
 - Treatments repeated in 24 (44%) patients to target residual viable tumor

<table>
<thead>
<tr>
<th>Patient age</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 years</td>
<td>4– 66 years</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Follow-up</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 months</td>
<td>0 – 47 months</td>
</tr>
</tbody>
</table>

Distribution of cases

- **Torso**
- **Proximal-UE**
- **Distal-UE**
- **Pelvis**
- **Proximal-LE**
- **Distal-LE**
<table>
<thead>
<tr>
<th>Summary of treatment results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Perfused Volume Ratio*</td>
</tr>
<tr>
<td>Tumor volume, median</td>
</tr>
<tr>
<td>• Total, Pre-FUS</td>
</tr>
<tr>
<td>• Viable, Post-FUS</td>
</tr>
</tbody>
</table>

*relative to total tumor volume, on a per treatment basis
Technical treatment parameters

<table>
<thead>
<tr>
<th></th>
<th>Mean ± SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment time</td>
<td>3.8 ± 1.2 hours</td>
<td>1.0 – 7.9 hours</td>
</tr>
<tr>
<td>Number of sonication per treatment</td>
<td>83 ± 36</td>
<td>6 – 235</td>
</tr>
<tr>
<td>Sonication energies</td>
<td>1854 ± 1023 J</td>
<td>470 – 5889 J</td>
</tr>
<tr>
<td>Average temperature per sonication</td>
<td>59 ± 6 °C</td>
<td>48 – 74 °C</td>
</tr>
</tbody>
</table>
OVERALL PAIN RELIEF

• Max: 6.9 ± 2.9 → 3.9 ± 2.9 (p < 0.0001)
• Avg: 3.8 ± 2.1 → 1.6 ± 1.8 (p < 0.0001)

COMMON THEME IN THOSE WITHOUT LOCAL CONTROL

• proximity to nerve, for example in popliteal fossa
• large tumor size
• proximity to skin
• scar from prior surgery
• mutation status?
Clinical benefit

Durable clinical benefit of the MRgFUS treatments based on

- Change in SF-36 scores (23 patients)

<table>
<thead>
<tr>
<th>SF-36 Category</th>
<th>Pre FUS</th>
<th>Post FUS</th>
<th>Change, per patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical functioning</td>
<td>72</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td>Role limitations due to physical health</td>
<td>39</td>
<td>68</td>
<td>26</td>
</tr>
<tr>
<td>Role limitations due to emotional problems</td>
<td>71</td>
<td>90</td>
<td>16</td>
</tr>
<tr>
<td>Energy/fatigue</td>
<td>48</td>
<td>56</td>
<td>7</td>
</tr>
<tr>
<td>Emotional well-being</td>
<td>72</td>
<td>78</td>
<td>6</td>
</tr>
<tr>
<td>Social functioning</td>
<td>66</td>
<td>86</td>
<td>17</td>
</tr>
<tr>
<td>Pain</td>
<td>47</td>
<td>68</td>
<td>20</td>
</tr>
<tr>
<td>General health</td>
<td>66</td>
<td>64</td>
<td>-4</td>
</tr>
</tbody>
</table>
Clinical successes
Treatment related adverse events

- **Burns are the most common complication**
 - Have occurred in 23 of 55 patients (42%)
 - Six of these burns are CTCAE v5.0 - Grade 3
 - Required surgery
 - Nerve injury: n = 6
 - 3 recovered function,
 - 1 with numbness,
 - 1 with weakness,
 - 1 with neuropathic pain managed medically

- **Common theme in those with complications**
 - Proximity to nerve, for example in popliteal fossa
 - Large tumor size
 - Proximity to skin
 - Scar from prior surgery
Other experience with MRgFUS

DR. MATTHEW BUCKNOR – UNIVERSITY OF CALIFORNIA AT SAN FRANCISCO

DRS. SEAN TUTTON AND MICHEAL GRIFFIN – MEDICAL COLLEGE OF WISCONSIN

DRS. ALESSANDRO NAPOLI AND ALBERTO BAZZOCHI – ITALY

DR. KARUN SHARMA – CHILDREN’S NATIONAL MEDICAL CENTER

DR. JAMES GELLER – CINCINNATI CHILDREN’S HOSPITAL MEDICAL CENTER

Cooling system

Courtesy of Dr. Allison Payne, University of Utah
Grant from Focused Ultrasound Foundation
Cryoablation

Percutaneous Cryoablation of Extraabdominal Desmoid Tumors: A 10-Year Experience

<table>
<thead>
<tr>
<th>Tumor Response</th>
<th>No. (%) of Tumors</th>
<th>Follow-Up (mo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No residual EAD tumor</td>
<td>9/23 (39.1)</td>
<td>26.6 ± 30.7*</td>
</tr>
<tr>
<td>Some volume reduction of EAD tumor</td>
<td>22/23 (95.7)</td>
<td>16.2 ± 20.0*</td>
</tr>
<tr>
<td>Progressive disease of EAD tumor</td>
<td>1/23 (4.3)</td>
<td>8.6</td>
</tr>
</tbody>
</table>

*Mean ± SD.
Percutaneous Image-Guided Cryoablation in Inoperable Extra-abdominal Desmoid Tumors: A Study of Tolerability and Efficacy

- On the first imaging study at 3 months, no residual enhancing mass was detected for nine lesions (53%).
- Of remaining 8 lesions, three increased during follow-up, including two associated with a recurrence of pain.
- The median change in tumor volume was estimated at -73.5% at 6 months (range -85 to -21%).
- During follow-up, two in situ recurrences were observed 6 months after the procedure.
Cryoablation of extra-abdominal desmoid tumours: initial experience and results

Cryoablation of extra-abdominal desmoid tumours: initial experience and results

Cryoablalation
Conclusion

Ablative approaches (MRgFUS/HIFU or Cryoablation)

- Provide an alternative treatment option to “standard” therapies
- Not all patients can be safely treated
- Complete tumor ablation is only achievable in a subset of patients
- Tumor size reduction and symptom improvement is possible even with partial treatment
- Tumors may regrow after partial treatment
- Although less invasive than surgery, there are risks with ablation
- Major impediment to access is difficulty in insurance authorization