
THE EVALUATION AND OUTCOMES OF MESENTERIC AND INTRA-ABDOMINAL DESMOIDS: A TARPSWG STUDY

Tristan Wild¹, Francesco Barretta², Kerianne Boulva¹, Peter Hohenberger³, Chiara Colombo², Shintaro Iwata⁴, Rebecca Gladdy⁵, Christina V. Angeles⁶, Paweł Sobczuk⁷, Winan J. van Houdt⁸, Samuel Ford⁹, Dan Blazer¹⁰, Vittorio Quagliuolo¹¹, Stephanie Greco¹², Neha Goel¹³, Fabian M. Johnston¹⁴, Samuel Aguiar Jr¹⁵, Greg Sigler¹, Elisabetta Pennacchioli¹⁶, Dagmar Adámková¹⁷, Sameer Rastogi¹⁸, Hayden Snow¹⁹, Palma Dileo²⁰, Bruno Vicenzi²¹, Chandrajit P. Raut²², Guy Lahat²³, JA van der Hage²⁴, Lee D. Cranmer²⁵, Attila Kollár²⁶, Jose Antonion Gonzalez Lopez²⁷, Kenneth Cardona²⁸, Giovanni Grignani²⁹, Marko Novak³⁰, Daphne Hompes³¹, Paul Ridgway³², Juan Angel Fernandes³³, Angela M Hong³⁴, Sergio Quildrian³⁵, Raza Sayyed³⁶, Nikolaos Vassos³, Elena Palassini², Chiaki Sato⁴, Carol Swallow⁵, Cameron A. Harter⁶, Piotr Rutkowski⁷, Sophie Joanne Maria Reijers⁸, Fabio Tirotta⁹, Dimitrios Moris¹⁰, Ferdinando Cananzi¹¹, Roberto J. Vidri¹², Julie Grossman¹³, Alexandra C. Istl¹⁴, Celso Abdon Lopes Mello¹⁵, Bharath BG¹⁸, David Gyorki¹⁹, Alessandra Maleddu²⁰, Sergio Valeri²¹, Mark Fairweather²², Eran Nizri²³, Corina Kim-Fuchs²⁶, Mireia Solans²⁷, Michael K. Turgeon²⁸, Lieve Bruggeman³¹, Luca Improta³², Anant Desai⁹, Cassia da Silva¹⁵, Tali Lior²¹, Marco Fiore², Alessandro Gronchi², Carolyn Nessim¹.

1. Ottawa Health Research Institute, Ottawa, Canada. 2. Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. 3. Mannheim University of Heidelberg, Mannheim Center, Ruprechts-Karls University of Heidelberg, Mannheim, Germany. 4. National Cancer Center Hospital, Tokyo, Japan. 5. University of Toronto, Canada. 6. Rogel Cancer Center, University of Michigan Ann Arbor, MI. 7. Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland. 8. Netherlands Cancer Institute, Amsterdam, NC. 11. Istituto Clinico Humanitas IRCCS, Milan, Italy. 12. Fox Chase Cancer Center, Philadelphia, Pennsylvania. 13 University of Miami, Miami, FL. 14. Johns Hopkins, Baltimore, MD. 15. A.C. Camargo Cancer Center, São Paulo, Brazil. 16. Istituto Europeo di Oncologia, Milan, Italy. 17. Masaryk Memorial Cancer Institute Brno, Czech Republic. 18. All India Institute of Medical Sciences (AIIMS), India. 19. Peter MacCallum Cancer Centre, Melbourne, Australia. 20 University College London Hospital. 21. Policlinico Universitario Campus Bio-Medico, Rome, Italy. 22. Dana-Farber Cancer Institute, Boston, MA. 23. Tel Aviv, Israel. 24. Leiden University Hospital Bern, Inselspital Switzerland. 27. CSUR de Sarcomas y Tumores Musculoesqueléticos, Hospital de Sant Pau, Barcelona, Spain. 28. Winship Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy. 30. Institute of Oncology Ljubljana, Slovenia. 31. University Hospital Gasthuisberg Leuven, Belgium. 32. Tallaght University Hospital, Dublin, Ireland. 33. University Hospital Virgen Arrixaca, Murcia, Spain. 34. Chris O'Brien Lifehouse, Camperdown, Australia. 35. Buenos Aires British Hospital, Buenos Aires, Argentina. 36. Patel Hospital, Karachi, Pakistan.

Statistical Analysis

Table 1. Baseline Demographic, Clinical, and Pathological Characteristics (n=642)					
Characteristic	Result				
Sex, No. (%)					
Male	335 (52.2)				
Female	307 (47.8)				
Age, median (IQR), years	42.0 (31.0-55.0)				
Follow-up Period, median (IQR), months					
All Cohorts	50.0 (25.3-87.0)				
OBS	44.8 (21.6-81.4)				
MED	50.7 (27.8-87.2)				
SURG	52.8 (27.2-91.1)				
Initial Management Cohort, No. (%)					
OBS	153 (23.8)				
Observation only	77 (50.3)				
Observation then medical management	30 (19.6)				
Observation then surgery	32 (20.9)				
Observation then medical + surgery	14 (9.2)				
MED	144 (22.4)				
Medical only	108 (75.0)				
Medical then surgery	36 (25.0)				
SURG	345 (53.7)				
SURG (R0-R1)	278 (80.6)				
Elective	229 (82.4)				
Emergency	49 (17.6)				
SURG (R2) Elective	67 (19.4) 51 (76.1)				
Emergency	14 (20.9)				
Not indicated	2 (3.0)				
Surgery Summary Over Total Course, No. (%)	2 (0.0)				
Complete Resection (R0-R1)	336 (52.3)				
Incomplete Resection (R2)	91 (14.2)				
No surgery throughout course	215 (33.5)				
FAP, No. (%)	210 (00.0)				
Yes	118 (18.4)				
No	522 (81.3)				
Unknown	2 (0.3)				
Desmoid Site, No. (%)					
Mesenteric	416 (64.8)				
Retroperitoneal	98 (15.3)				
Pelvic	78 (12.1)				
Intra-peritoneal	46 (7.2)				
Not available	4 (0.6)				

Across all cohorts FAP had an adverse prognostic effect with significance in the SURG cohort, and nearing significance in the OBS cohort (p=0.052). In the OBS cohort, site was a major significant prognostic factor with both retroperitoneal and pelvic having worse outcomes than mesenteric. Initial size shown a "U" shaped relationship with PFS in MED, with increasing protective effect from 8 to 14 cm, and adverse thereafter. Lastly, completeness of surgical resection (R0/R1) was not associated with more favorable outcome.

asso	ciated	to	а	les	ser
risk	to	und	lerg	jo	to
risk to undergo to surgical resection.					

male sex were

age, smaller initial size

and

CONCLUSIONS

- Active surveillance in intra-abdominal desmoids is feasible and yields similar percentages of spontaneous disease stabilization and regression as for desmoid tumors at other anatomical sites
- Observed deaths on overall survival analysis mostly occurred in FAP+ patients, with FAP+ patients also having a lower 5-Year PFS than FAP- patients across all cohorts
- FAP was identified as and adverse event in across all initial management cohorts
- 5-year PFS is similar across all initial management cohorts, suggesting that they are all viable treatment options
- In the OBS cohort, site was a major significant prognostic factor, with both retroperitoneal (especially in no-FAP) and pelvic (especially in FAP) having worse outcomes than mesenteric
- Surgery is option as initial management when surgical morbidity is acceptable in patients affected by sporadic desmoids, especially if located to the mesentery or retroperitoneum.

AWKNOWLEDGEMENTS

We would like to acknowledge all participating members of the TARPSWG for their continued collaboration and shared interest in advancing sarcoma research. Further, we extend a special thank you to all patients and their families involved in this study.

Corresponding Author: Tristan Wild (twild091@uottawa.ca)